daily leetcode - rotate-image - !
题目地址
https://leetcode.com/problems/rotate-image/
题目描述
You are given an n x n 2D matrix representing an image.
Rotate the image by 90 degrees (clockwise).
Note:
You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.
Example 1:
Given input matrix =
[
[1,2,3],
[4,5,6],
[7,8,9]
],
rotate the input matrix in-place such that it becomes:
[
[7,4,1],
[8,5,2],
[9,6,3]
]
Example 2:
Given input matrix =
[
[ 5, 1, 9,11],
[ 2, 4, 8,10],
[13, 3, 6, 7],
[15,14,12,16]
],
rotate the input matrix in-place such that it becomes:
[
[15,13, 2, 5],
[14, 3, 4, 1],
[12, 6, 8, 9],
[16, 7,10,11]
]
思路
在计算机图像处理里,旋转图片是很常见的,由于图片的本质是二维数组,所以也就变成了对数组的操作处理,翻转的本质就是某个位置上数移动到另一个位置上,比如用一个简单的例子来分析:
1 2 3 7 4 1
4 5 6 --> 8 5 2
7 8 9 9 6 3
对于 90 度的翻转有很多方法,一步或多步都可以解,先来看一种直接的方法,这种方法是按顺时针的顺序去覆盖前面的数字,从四个顶角开始,然后往中间去遍历,每次覆盖的坐标都是同理,如下:
(i, j) <- (n-1-j, i) <- (n-1-i, n-1-j) <- (j, n-1-i)
这其实是个循环的过程,第一个位置又覆盖了第四个位置,这里 i 的取值范围是 [0, n/2),j 的取值范围是 [i, n-1-i),至于为什么 i 和 j 是这个取值范围,为啥 i 不用遍历 [n/2, n),若仔细观察这些位置之间的联系,不难发现,实际上 j 列的范围 [i, n-1-i) 顺时针翻转 90 度,正好就是 i 行的 [n/2, n) 的位置,这个方法每次循环换四个数字,如下所示:
1 2 3 7 2 1 7 4 1
4 5 6 --> 4 5 6 --> 8 5 2
7 8 9 9 8 3 9 6 3
解法一:
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
int n = matrix.size();
for (int i = 0; i < n / 2; ++i) {
for (int j = i; j < n - 1 - i; ++j) {
int tmp = matrix[i][j];
matrix[i][j] = matrix[n - 1 - j][i];
matrix[n - 1 - j][i] = matrix[n - 1 - i][n - 1 - j];
matrix[n - 1 - i][n - 1 - j] = matrix[j][n - 1 - i];
matrix[j][n - 1 - i] = tmp;
}
}
}
};
还有一种解法,首先以从对角线为轴翻转,然后再以 x 轴中线上下翻转即可得到结果,如下图所示(其中蓝色数字表示翻转轴):
1 2 3 9 6 3 7 4 1
4 5 6 --> 8 5 2 --> 8 5 2
7 8 9 7 4 1 9 6 3
解法二:
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
int n = matrix.size();
for (int i = 0; i < n - 1; ++i) {
for (int j = 0; j < n - i; ++j) {
swap(matrix[i][j], matrix[n - 1- j][n - 1 - i]);
}
}
reverse(matrix.begin(), matrix.end());
}
};
最后再来看一种方法,这种方法首先对原数组取其转置矩阵,然后把每行的数字翻转可得到结果,如下所示(其中蓝色数字表示翻转轴,GitHub 上可能无法显示颜色,请参见博客园上的帖子):
1 2 3 1 4 7 7 4 1
4 5 6 --> 2 5 8 --> 8 5 2
7 8 9 3 6 9 9 6 3
解法三:
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
int n = matrix.size();
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
swap(matrix[i][j], matrix[j][i]);
}
reverse(matrix[i].begin(), matrix[i].end());
}
}
};
思路 2
这道题目让我们 in-place,也就说空间复杂度要求 O(1),如果没有这个限制的话,很简单。
通过观察发现,我们只需要将第 i 行变成第 n - i - 1 列, 因此我们只需要保存一个原有矩阵,然后按照这个规律一个个更新即可。
代码:
var rotate = function(matrix) {
// 时间复杂度O(n^2) 空间复杂度O(n)
const oMatrix = JSON.parse(JSON.stringify(matrix)); // clone
const n = oMatrix.length;
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
matrix[j][n - i - 1] = oMatrix[i][j];
}
}
};
如果要求空间复杂度是 O(1)的话,我们可以用一个 temp 记录即可,这个时候就不能逐个遍历了。
比如遍历到 1 的时候,我们把 1 存到 temp,然后更新 1 的值为 7。 1 被换到了 3 的位置,我们再将 3 存到 temp,依次类推。
但是这种解法写起来比较麻烦,这里我就不写了。
事实上有一个更加巧妙的做法,我们可以巧妙地利用对称轴旋转达到我们的目的,如图,我们先进行一次以对角线为轴的翻转,然后
再进行一次以水平轴心线为轴的翻转即可。
这种做法的时间复杂度是 O(n^2) ,空间复杂度是 O(1)
关键点解析
- 矩阵旋转操作
代码
- 语言支持: JavaScript,Python3
/*
* @lc app=leetcode id=48 lang=javascript
*
* [48] Rotate Image
*/
/**
* @param {number[][]} matrix
* @return {void} Do not return anything, modify matrix in-place instead.
*/
var rotate = function(matrix) {
// 时间复杂度O(n^2) 空间复杂度O(1)
// 做法: 先沿着对角线翻转,然后沿着水平线翻转
const n = matrix.length;
function swap(arr, [i, j], [m, n]) {
const temp = arr[i][j];
arr[i][j] = arr[m][n];
arr[m][n] = temp;
}
for (let i = 0; i < n - 1; i++) {
for (let j = 0; j < n - i; j++) {
swap(matrix, [i, j], [n - j - 1, n - i - 1]);
}
}
for (let i = 0; i < n / 2; i++) {
for (let j = 0; j < n; j++) {
swap(matrix, [i, j], [n - i - 1, j]);
}
}
};
Python3 Code:
class Solution:
def rotate(self, matrix: List[List[int]]) -> None:
"""
Do not return anything, modify matrix in-place instead.
先做矩阵转置(即沿着对角线翻转),然后每个列表翻转;
"""
n = len(matrix)
for i in range(n):
for j in range(i, n):
matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j]
for m in matrix:
m.reverse()
def rotate2(self, matrix: List[List[int]]) -> None:
"""
Do not return anything, modify matrix in-place instead.
通过内置函数zip,可以简单实现矩阵转置,下面的代码等于先整体翻转,后转置;
不过这种写法的空间复杂度其实是O(n);
"""
matrix[:] = map(list, zip(*matrix[::-1]))
本文参考自:
https://github.com/grandyang/leetcode/ &
https://github.com/azl397985856/leetcode