daily leetcode - combinations - !

题目地址

https://leetcode.com/problems/combinations/

题目描述

Given two integers n and k , return all possible combinations of k numbers out of 1 ... n.

For example,
If n = 4 and k = 2, a solution is:

[
  [2,4],
  [3,4],
  [2,3],
  [1,2],
  [1,3],
  [1,4],
]

思路

这道题让求1到n共n个数字里k个数的组合数的所有情况,还是要用深度优先搜索DFS来解,根据以往的经验,像这种要求出所有结果的集合,一般都是用DFS调用递归来解。那么我们建立一个保存最终结果的大集合res,还要定义一个保存每一个组合的小集合out,每次放一个数到out里,如果out里数个数到了k个,则把out保存到最终结果中,否则在下一层中继续调用递归。网友u010500263的博客里有一张图很好的说明了递归调用的顺序,请点击这里

关键点解析

代码

解法一:

class Solution {
public:
    vector<vector<int>> combine(int n, int k) {
        vector<vector<int>> res;
        vector<int> out;
        helper(n, k, 1, out, res);
        return res;
    }
    void helper(int n, int k, int level, vector<int>& out, vector<vector<int>>& res) {
        if (out.size() == k) {res.push_back(out); return;}
        for (int i = level; i <= n; ++i) {
            out.push_back(i);
            helper(n, k, i + 1, out, res);
            out.pop_back();
        }
    }
};

对于n = 5, k = 3, 处理的结果如下:

1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5

我们再来看一种递归的写法,此解法没用helper当递归函数,而是把本身就当作了递归函数,写起来十分的简洁,也是非常有趣的一种解法。这个解法用到了一个重要的性质 C(n, k) = C(n-1, k-1) + C(n-1, k),这应该在我们高中时候学排列组合的时候学过吧,博主也记不清了。总之,翻译一下就是,在n个数中取k个数的组合项个数,等于在n-1个数中取k-1个数的组合项个数再加上在n-1个数中取k个数的组合项个数之和。这里博主就不证明了,因为我也不会,就直接举题目中的例子来说明吧:

C(4, 2) = C(3, 1) + C(3, 2)

我们不难写出 C(3, 1) 的所有情况:[1], [2], [3],还有 C(3, 2) 的所有情况:[1, 2], [1, 3], [2, 3]。我们发现二者加起来为6,正好是 C(4, 2) 的个数之和。但是我们仔细看会发现,C(3, 2)的所有情况包含在 C(4, 2) 之中,但是 C(3, 1) 的每种情况只有一个数字,而我们需要的结果k=2,其实很好办,每种情况后面都加上4,于是变成了:[1, 4], [2, 4], [3, 4],加上C(3, 2) 的所有情况:[1, 2], [1, 3], [2, 3],正好就得到了 n=4, k=2 的所有情况了。参见代码如下:

解法二:

class Solution {
public:
    vector<vector<int>> combine(int n, int k) {
        if (k > n || k < 0) return {};
        if (k == 0) return {{}};
        vector<vector<int>> res = combine(n - 1, k - 1);
        for (auto &a : res) a.push_back(n);
        for (auto &a : combine(n - 1, k)) res.push_back(a);
        return res;
    }
};

我们再来看一种迭代的写法,也是一种比较巧妙的方法。这里每次先递增最右边的数字,存入结果res中,当右边的数字超过了n,则增加其左边的数字,然后将当前数组赋值为左边的数字,再逐个递增,直到最左边的数字也超过了n,停止循环。对于n=4, k=2时,遍历的顺序如下所示:

0 0 #initialization
1 0
1 1 
1 2 #push_back
1 3 #push_back
1 4 #push_back
1 5
2 5
2 2 
2 3 #push_back
2 4 #push_back
...
3 4 #push_back
3 5
4 5
4 4
4 5
5 5 #stop   

解法三:

class Solution {
public:
    vector<vector<int>> combine(int n, int k) {
        vector<vector<int>> res;
        vector<int> out(k, 0);
        int i = 0;
        while (i >= 0) {
            ++out[i];
            if (out[i] > n) --i;
            else if (i == k - 1) res.push_back(out);
            else {
                ++i;
                out[i] = out[i - 1];
            }
        }
        return res;
    }
};

本文参考自:
https://github.com/grandyang/leetcode/ &
https://github.com/azl397985856/leetcode


标题: daily leetcode - combinations - !
文章作者: lonuslan
文章链接: https://louislan.com/articles/2020/02/23/1582469229931.html
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 Hi I'm LouisLan
    评论
    0 评论
avatar

取消