daily leetcode - subsets - !

题目地址

https://leetcode.com/problems/subsets/

题目描述

Given a set of distinct integers, S , return all possible subsets.

Note:

  • Elements in a subset must be in non-descending order.
  • The solution set must not contain duplicate subsets.

For example,
If S = [1,2,3], a solution is:

[
  [3],
  [1],
  [2],
  [1,2,3],
  [1,3],
  [2,3],
  [1,2],
  []
]

思路

这道求子集合的问题,由于其要列出所有结果,按照以往的经验,肯定要是要用递归来做。这道题其实它的非递归解法相对来说更简单一点,下面我们先来看非递归的解法,由于题目要求子集合中数字的顺序是非降序排列的,所有我们需要预处理,先给输入数组排序,然后再进一步处理,最开始我在想的时候,是想按照子集的长度由少到多全部写出来,比如子集长度为0的就是空集,空集是任何集合的子集,满足条件,直接加入。下面长度为1的子集,直接一个循环加入所有数字,子集长度为2的话可以用两个循环,但是这种想法到后面就行不通了,因为循环的个数不能无限的增长,所以我们必须换一种思路。我们可以一位一位的网上叠加,比如对于题目中给的例子 [1,2,3] 来说,最开始是空集,那么我们现在要处理1,就在空集上加1,为 [1],现在我们有两个自己 [] 和 [1],下面我们来处理2,我们在之前的子集基础上,每个都加个2,可以分别得到 [2],[1, 2],那么现在所有的子集合为 [], [1], [2], [1, 2],同理处理3的情况可得 [3], [1, 3], [2, 3], [1, 2, 3], 再加上之前的子集就是所有的子集合了,代码如下:

解法一:

class Solution {
public:
    vector<vector<int> > subsets(vector<int> &S) {
        vector<vector<int> > res(1);
        sort(S.begin(), S.end());
        for (int i = 0; i < S.size(); ++i) {
            int size = res.size();
            for (int j = 0; j < size; ++j) {
                res.push_back(res[j]);
                res.back().push_back(S[i]);
            }
        }
        return res;
    }
};

整个添加的顺序为:

[]
[1]
[2]
[1 2]
[3]
[1 3]
[2 3]
[1 2 3]

下面来看递归的解法,相当于一种深度优先搜索,参见网友 JustDoIt的博客,由于原集合每一个数字只有两种状态,要么存在,要么不存在,那么在构造子集时就有选择和不选择两种情况,所以可以构造一棵二叉树,左子树表示选择该层处理的节点,右子树表示不选择,最终的叶节点就是所有子集合,树的结构如下:

                        []        
                   /          \        
                  /            \     
                 /              \
              [1]                []
           /       \           /    \
          /         \         /      \        
       [1 2]       [1]       [2]     []
      /     \     /   \     /   \    / \
  [1 2 3] [1 2] [1 3] [1] [2 3] [2] [3] []    

解法二:

class Solution {
public:
    vector<vector<int> > subsets(vector<int> &S) {
        vector<vector<int> > res;
        vector<int> out;
        sort(S.begin(), S.end());
        getSubsets(S, 0, out, res);
        return res;
    }
    void getSubsets(vector<int> &S, int pos, vector<int> &out, vector<vector<int> > &res) {
        res.push_back(out);
        for (int i = pos; i < S.size(); ++i) {
            out.push_back(S[i]);
            getSubsets(S, i + 1, out, res);
            out.pop_back();
        }
    }
};

整个添加的顺序为:

[]
[1]
[1 2]
[1 2 3]
[1 3]
[2]
[2 3]
[3]

最后我们再来看一种解法,这种解法是 CareerCup 书上给的一种解法,想法也比较巧妙,把数组中所有的数分配一个状态,true 表示这个数在子集中出现,false 表示在子集中不出现,那么对于一个长度为n的数组,每个数字都有出现与不出现两种情况,所以共有 2n 中情况,那么我们把每种情况都转换出来就是子集了,我们还是用题目中的例子, [1 2 3] 这个数组共有8个子集,每个子集的序号的二进制表示,把是1的位对应原数组中的数字取出来就是一个子集,八种情况都取出来就是所有的子集了,参见代码如下:

1 2 3 Subset
0 F F F []
1 F F T 3
2 F T F 2
3 F T T 23
4 T F F 1
5 T F T 13
6 T T F 12
7 T T T 123

解法三:

class Solution {
public:
    vector<vector<int> > subsets(vector<int> &S) {
        vector<vector<int> > res;
        sort(S.begin(), S.end());
        int max = 1 << S.size();
        for (int k = 0; k < max; ++k) {
            vector<int> out = convertIntToSet(S, k);
            res.push_back(out);
        }
        return res;
    }
    vector<int> convertIntToSet(vector<int> &S, int k) {
        vector<int> sub;
        int idx = 0;
        for (int i = k; i > 0; i >>= 1) {
            if ((i & 1) == 1) {
                sub.push_back(S[idx]);
            }
            ++idx;
        }
        return sub;
    }
};

思路2

这道题目是求集合,并不是求极值,因此动态规划不是特别切合,因此我们需要考虑别的方法。

这种题目其实有一个通用的解法,就是回溯法。
网上也有大神给出了这种回溯法解题的
通用写法,这里的所有的解法使用通用方法解答。
除了这道题目还有很多其他题目可以用这种通用解法,具体的题目见后方相关题目部分。

我们先来看下通用解法的解题思路,我画了一张图:

mark

通用写法的具体代码见下方代码区。

关键点解析

  • 回溯法
  • backtrack 解题公式

代码

  • 语言支持:JS,C++

JavaScript Code:


/*
 * @lc app=leetcode id=78 lang=javascript
 *
 * [78] Subsets
 *
 * https://leetcode.com/problems/subsets/description/
 *
 * algorithms
 * Medium (51.19%)
 * Total Accepted:    351.6K
 * Total Submissions: 674.8K
 * Testcase Example:  '[1,2,3]'
 *
 * Given a set of distinct integers, nums, return all possible subsets (the
 * power set).
 * 
 * Note: The solution set must not contain duplicate subsets.
 * 
 * Example:
 * 
 * 
 * Input: nums = [1,2,3]
 * Output:
 * [
 * ⁠ [3],
 * [1],
 * [2],
 * [1,2,3],
 * [1,3],
 * [2,3],
 * [1,2],
 * []
 * ]
 * 
 */
function backtrack(list, tempList, nums, start) {
    list.push([...tempList]);
    for(let i = start; i < nums.length; i++) {
        tempList.push(nums[i]);
        backtrack(list, tempList, nums, i + 1);
        tempList.pop();
    }
}
/**
 * @param {number[]} nums
 * @return {number[][]}
 */
var subsets = function(nums) {
    const list = [];
    backtrack(list, [], nums, 0);
    return list;
};

C++ Code:

class Solution {
public:
    vector<vector<int>> subsets(vector<int>& nums) {
        auto ret = vector<vector<int>>();
        auto tmp = vector<int>();
        backtrack(ret, tmp, nums, 0);
        return ret;
    }
    
    void backtrack(vector<vector<int>>& list, vector<int>& tempList, vector<int>& nums, int start) {
        list.push_back(tempList);
        for (auto i = start; i < nums.size(); ++i) {
            tempList.push_back(nums[i]);
            backtrack(list, tempList, nums, i + 1);
            tempList.pop_back();
        }
    }
};

本文参考自:
https://github.com/grandyang/leetcode/ &
https://github.com/azl397985856/leetcode


标题: daily leetcode - subsets - !
文章作者: lonuslan
文章链接: https://louislan.com/articles/2020/02/23/1582469404076.html
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 Hi I'm LouisLan
    评论
    0 评论
avatar

取消