数学公式--修正版(mathjax显示语法错误)

高等数学

1.导数定义:

导数和微分的概念

f'(x_{0}) = \lim_{\Delta x \rightarrow 0}\,\frac{f(x_{0} + \Delta x) - f(x_{0})}{\text{Δx}} (1)

或者:f'(x_{0}) = \lim_{x \rightarrow x_{0}}\,\frac{f(x) - f(x_{0})}{x - x_{0}} (2)

2.左右导数导数的几何意义和物理意义

函数f(x)x_{0}处的左、右导数分别定义为:

左导数:{f'}_{-}(x_{0}) = \lim_{\Delta x \rightarrow 0^{-}}\,\frac{f(x_{0} + \Delta x) - f(x_{0})}{\text{Δx}} = \lim_{x \rightarrow x_{0}^{-}}\,\frac{f(x) - f(x_{0})}{x - x_{0}},(x = x_{0} + \Delta x)

右导数:{f'}_{+}(x_{0}) = \lim_{\Delta x \rightarrow 0^{+}}\,\frac{f(x_{0} + \Delta x) - f(x_{0})}{\text{Δx}} = \lim_{x \rightarrow x_{0}^{+}}\,\frac{f(x) - f(x_{0})}{x - x_{0}}

3.函数的可导性与连续性之间的关系

Th1: 函数f(x)x_{0}处可微\Leftrightarrow f(x)x_{0}处可导。

**Th2:**若函数在点x_{0}处可导,则y = f(x)在点x_{0}处连续,反之则不成立.即函数连续不一定可导。

Th3:f'(x_{0})存在\Leftrightarrow {f'}_{-}(x_{0}) = {f'}_{+}(x_{0})

4.平面曲线的切线和法线

切线方程 : y - y_{0} = f'(x_{0})(x - x_{0})

法线方程:y - y_{0} = - \frac{1}{f'(x_{0})}(x - x_{0}),f'(x_{0}) \neq 0

5.四则运算法则

设函数u = u(x),v = v(x)在点x可导,则:

(1) \left( u \pm v \right)^{'} = u^{'} \pm v^{'} \text{\ \ \ \ }

(2) (\text{uv})' = \text{uv}' + \text{vu}' d(\text{uv}) = \text{udv} + \text{vdu}

(3) (\frac{u}{v})' = \frac{\text{vu}' - \text{uv}'}{v^{2}}(v \neq 0) d(\frac{u}{v}) = \frac{\text{vdu} - \text{udv}}{v^{2}}

6.基本导数与微分表

(1) y = c(常数) 则: y^{'} = 0 \text{dy} = 0

(2) y = x^{\alpha}(\alpha为实数) 则: y' = \alpha x^{\alpha - 1} \text{dy} = \alpha x^{\alpha - 1}\text{dx}

(3) y = a^{x} 则: y' = a^{x}\ln a \text{dy} = a^{x}\ln\text{adx} 特例: (e^{x})' = e^{x} d(e^{x}) = e^{x}\text{dx}

(4) y = \log_{a}x 则:

y' = \frac{1}{x\ln a}\text{dy} = \frac{1}{x\ln a}\text{dx} 特例:y = lnx (lnx)' = \frac{1}{x} d(lnx) = \frac{1}{x}\text{dx}

(5) y = sinx 则:y' = cosx d(sinx) = cos\text{xdx}

(6) y = cosx 则:y' = - sinx d(cosx) = - sin\text{xdx}

(7) y = tanx 则: y^{'} = \frac{1}{\cos^{2}x} = \sec^{2}x d(tanx) = \sec^{2}\text{xdx}

(8) y = cotx 则:y' = - \frac{1}{\sin^{2}x} = - \csc^{2}x d(cotx) = - \csc^{2}\text{xdx}

(9) y = secx 则:y' = secx\tan x d(secx) = secx\tan\text{xdx}

(10) y = cscx 则:y' = - cscx\cot x d(cscx) = - cscx\cot\text{xdx}

(11) y = arcsinx 则:y' = \frac{1}{\sqrt{1 - x^{2}}} d(arcsinx) = \frac{1}{\sqrt{1 - x^{2}}}\text{dx}

(12) y = arccosx 则:y' = - \frac{1}{\sqrt{1 - x^{2}}} d(arccosx) = - \frac{1}{\sqrt{1 - x^{2}}}\text{dx}

(13) y = arctanx 则:y' = \frac{1}{1 + x^{2}} d(arctanx) = \frac{1}{1 + x^{2}}\text{dx}

(14) y = arccotx 则:y' = - \frac{1}{1 + x^{2}} d(arccotx) = - \frac{1}{1 + x^{2}}\text{dx}

(15) y = \text{shx} 则:y' = \text{chx} d(\text{shx}) = \text{chxdx}

(16) y = \text{chx} 则:y' = \text{shx} d(\text{chx}) = \text{shxdx}

7.复合函数,反函数,隐函数以及参数方程所确定的函数的微分法

(1) 反函数的运算法则: 设y = f(x)在点x的某邻域内单调连续,在点x处可导且f'(x) \neq 0,则其反函数在点x所对应的y处可导,并且有\frac{\text{dy}}{\text{dx}} = \frac{1}{\frac{\text{dx}}{\text{dy}}}

(2) 复合函数的运算法则:若\mu = \varphi(x)在点x可导,而y = f(\mu)在对应点\mu(\mu = \varphi(x))可导,则复合函数y = f(\varphi(x))在点x可导,且y' = f'(\mu) \cdot \varphi'(x)

(3) 隐函数导数\frac{\text{dy}}{\text{dx}}的求法一般有三种方法:

1)方程两边对x求导,要记住yx的函数,则y的函数是x的复合函数.例如\frac{1}{y}y^{2}\text{lny}e^{y}等均是x的复合函数. 对x求导应按复合函数连锁法则做。

2)公式法.由F(x,y) = 0知 {% raw %}\frac{\text{dy}}{\text{dx}} = - \frac{{F'}_{x}(x,y)}{{F'}_{y}(x,y)}{% endraw %},其中,{F'}_{x}(x,y){F'}_{y}(x,y)分别表示F(x,y)xy的偏导数。

3)利用微分形式不变性

8.常用高阶导数公式

(1)(a^{x})\,^{(n)} = a^{x}\ln^{n}a\quad(a > 0)\quad\quad(e^{x})\,^{(n)} = e\,^{x}

(2)(sin\text{kx})\,^{(n)} = k^{n}sin(\text{kx} + n \cdot \frac{\pi}{2})

(3)(cos\text{kx})\,^{(n)} = k^{n}cos(\text{kx} + n \cdot \frac{\pi}{2})

(4)(x^{m})\,^{(n)} = m(m - 1)\cdots(m - n + 1)x^{m - n}

(5)(lnx)\,^{(n)} = {( - 1)}^{(n - 1)}\frac{(n - 1)!}{x^{n}}

(6)莱布尼兹公式:若u(x)\,,v(x)n阶可导,则: {(\text{uv})}^{(n)} = \sum_{i = 0}^{n}{c_{n}^{i}u^{(i)}v^{(n - i)}},其中u^{(0)} = uv^{(0)} = v

9.微分中值定理,泰勒公式

Th1:(费马定理)

若函数f(x)满足条件:

(1)函数f(x)x_{0}的某邻域内有定义,并且在此邻域内恒有 f(x) \leq f(x_{0})f(x) \geq f(x_{0}),

(2) f(x)x_{0}处可导,则有 f'(x_{0}) = 0

Th2:(罗尔定理)

设函数f(x)满足条件:

(1)在闭区间\lbrack a,b\rbrack上连续; (2)在(a,b)内可导;(3)f\left( a \right) = f\left( b \right)

则在(a,b)\exists一个\xi,使 f'(\xi) = 0

Th3: (拉格朗日中值定理)

设函数f(x)满足条件:

(1)在\lbrack a,b\rbrack上连续;(2)在(a,b)内可导;

则在(a,b)内存在一个\xi,使 \frac{f(b) - f(a)}{b - a} = f'(\xi)

Th4: (柯西中值定理)

设函数f(x)g(x)满足条件:

(1) 在\lbrack a,b\rbrack上连续;(2) 在(a,b)内可导且f'(x)g'(x)均存在,且g'(x) \neq 0

则在(a,b)内存在一个\xi,使 \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}

10.洛必达法则

法则Ⅰ(\frac{\mathbf{0}}{\mathbf{0}}型不定式极限)

设函数f\left( x \right),g\left( x \right)满足条件: \lim_{x \rightarrow x_{0}}\, f\left( x \right) = 0,\lim_{x \rightarrow x_{0}}\, g\left( x \right) = 0; f\left( x \right),g\left( x \right)x_{0}的邻域内可导 (在x_{0}处可除外)且g'\left( x \right) \neq 0;

\lim_{x \rightarrow x_{0}}\,\frac{f'\left( x \right)}{g'\left( x \right)}存在(或\infty)。

则: \lim_{x \rightarrow x_{0}}\,\frac{f\left( x \right)}{g\left( x \right)} = \lim_{x \rightarrow x_{0}}\,\frac{f'\left( x \right)}{g'\left( x \right)}

法则\mathbf{I’} (\frac{\mathbf{0}}{\mathbf{0}}型不定式极限)

设函数f\left( x \right),g\left( x \right)满足条件: \lim_{x \rightarrow \infty}\, f\left( x \right) = 0,\lim_{x \rightarrow \infty}\, g\left( x \right) = 0;存在一个X > 0,当\left| x \right| > X时,f\left( x \right),g\left( x \right)可导,且g'\left( x \right) \neq 0;\lim_{x \rightarrow x_{0}}\,\frac{f'\left( x \right)}{g'\left( x \right)}存在(或\infty)。

则: \lim_{x \rightarrow x_{0}}\,\frac{f\left( x \right)}{g\left( x \right)} = \lim_{x \rightarrow x_{0}}\,\frac{f'\left( x \right)}{g'\left( x \right)}.

法则Ⅱ(\frac{\mathbf{\infty}}{\mathbf{\infty}}型不定式极限)

设函数f\left( x \right),g\left( x \right)满足条件: \lim_{x \rightarrow x_{0}}\, f\left( x \right) = \infty,\lim_{x \rightarrow x_{0}}\, g\left( x \right) = \infty; f\left( x \right),g\left( x \right)x_{0} 的邻域内可 导(在x_{0}处可除外)且g'\left( x \right) \neq 0;\lim_{x \rightarrow x_{0}}\,\frac{f'\left( x \right)}{g'\left( x \right)}存在(或\infty)。

则: \lim_{x \rightarrow x_{0}}\,\frac{f\left( x \right)}{g\left( x \right)} = \lim_{x \rightarrow x_{0}}\,\frac{f'\left( x \right)}{g'\left( x \right)}.

同理法则II’(\frac{\infty}{\infty}型不定式极限)仿法则I’可写出

11.泰勒公式

设函数f(x)在点x_{0}处的某邻域内具有n + 1阶导数,则对该邻域内异于x_{0}的任意点x,在x_{0}x之间至少存在一个\xi,使得:

f(x) = f(x_{0}) + f'(x_{0})(x - x_{0}) + \frac{1}{2!}f''(x_{0}){(x - x_{0})}^{2} + \cdots + \frac{f^{(n)}(x_{0})}{n!}{(x - x_{0})}^{n} + R_{n}(x)

其中 R_{n}(x) = \frac{f^{(n + 1)}(\xi)}{(n + 1)!}{(x - x_{0})}^{n + 1}称为f(x)在点x_{0}处的n阶泰勒余项。

x_{0} = 0,则n阶泰勒公式:

f(x) = f(0) + f'(0)x + \frac{1}{2!}f''(0)x^{2} + \cdots + \frac{f^{(n)}(0)}{n!}x^{n} + R_{n}(x)......

(1) 其中 R_{n}(x) = \frac{f^{(n + 1)}(\xi)}{(n + 1)!}x^{n + 1}\xi在0与x之间。(1)式称为麦克劳林公式

常用五种函数在x_{0} = 0处的泰勒公式 :

1) e^{x} = 1 + x + \frac{1}{2!}x^{2} + \cdots + \frac{1}{n!}x^{n} + \frac{x^{n + 1}}{(n + 1)!}e^{\xi}
= 1 + x + \frac{1}{2!}x^{2} + \cdots + \frac{1}{n!}x^{n} + o(x^{n})

2) \sin x = x - \frac{1}{3!}x^{3} + \cdots + \frac{x^{n}}{n!}\sin\frac{\text{nπ}}{2} + \frac{x^{n + 1}}{\left( n + 1 \right)!}\sin\left( \xi + \frac{n + 1}{2}\pi \right)

= x - \frac{1}{3!}x^{3} + \cdots + \frac{x^{n}}{n!}\sin\frac{\text{nπ}}{2} + o\left( x^{n} \right)

3) \cos x = 1 - \frac{1}{2!}x^{2} + \cdots + \frac{x^{n}}{n!}\cos\frac{\text{nπ}}{2} + \frac{x^{n + 1}}{(n + 1)!}cos(\xi + \frac{n + 1}{2}\pi)

= 1 - \frac{1}{2!}x^{2} + \cdots + \frac{x^{n}}{n!}\cos\frac{\text{nπ}}{2} + o(x^{n})

4) {% raw %}ln(1 + x) = x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} - \cdots + {( - 1)}^{n - 1}\frac{x^{n}}{n} + \frac{{( - 1)}^{n}x^{n + 1}}{(n + 1){(1 + \xi)}^{n + 1}}{% endraw %}

= x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} - \cdots + {( - 1)}^{n - 1}\frac{x^{n}}{n} + o(x^{n})

5) {(1 + x)}^{m} = 1 + \text{mx} + \frac{m(m - 1)}{2!}x^{2} + \cdots + \frac{m(m - 1)\cdots(m - n + 1)}{n!}x^{n} + \frac{m(m - 1)\cdots(m - n + 1)}{(n + 1)!}x^{n + 1}{(1 + \xi)}^{m - n - 1}

{(1 + x)}^{m} = 1 + \text{mx} + \frac{m(m - 1)}{2!}x^{2} + \cdots + \frac{m(m - 1)\cdots(m - n + 1)}{n!}x^{n} + o(x^{n})

12.函数单调性的判断

Th1: 设函数f(x)(a,b)区间内可导,如果对\forall x \in (a,b),都有f\,'(x) > 0(或f\,'(x) < 0),则函数f(x)(a,b)内是单调增加的(或单调减少)。

Th2: (取极值的必要条件)设函数f(x)x_{0}处可导,且在x_{0}处取极值,则f\,'(x_{0}) = 0.

Th3: (取极值的第一充分条件)设函数f(x)x_{0}的某一邻域内可微,且f\,'(x_{0}) = 0(或f(x)x_{0}处连续,但f\,'(x_{0})不存在.)。

(1)若当x经过x_{0}时,f\,'(x)由"+"变"-",则f(x_{0})为极大值;

(2)若当x经过x_{0}时,f\,'(x)由"-"变"+",则f(x_{0})为极小值;

(3)若f\,'(x)经过x = x_{0}的两侧不变号,则f(x_{0})不是极值。

Th4: (取极值的第二充分条件)设f(x)在点x_{0}处有f''(x) \neq 0,且f\,'(x_{0}) = 0,则:

f'\,'(x_{0}) < 0时,f(x_{0})为极大值; 当f'\,'(x_{0}) > 0时,f(x_{0})为极小值. 注:如果f'\,'(x_{0})0,此方法失效。

13.渐近线的求法

(1)水平渐近线

\lim_{x \rightarrow + \infty}\, f(x) = b,或\lim_{x \rightarrow - \infty}\, f(x) = b,则y = b 称为函数y = f(x)的水平渐近线。

(2)铅直渐近线

\lim_{x \rightarrow x_{0}^{-}}\, f(x) = \infty,或\lim_{x \rightarrow x_{0}^{+}}\, f(x) = \infty,则x = x_{0} 称为y = f(x)的铅直渐近线。

(3)斜渐近线 若a = \lim_{x \rightarrow \infty}\,\frac{f(x)}{x},\quad b = \lim_{x \rightarrow \infty}\,\lbrack f(x) - \text{ax}\rbrack,则 y = \text{ax} + b称为y = f(x)的斜渐近线。

14.函数凹凸性的判断

Th1: (凹凸性的判别定理)若在I上f''(x) < 0(或f''(x) > 0), 则f(x)在I上是凸的(或凹的)。

Th2: (拐点的判别定理1)若在x_{0}f''(x) = 0,(或f''(x)不存在),当x变动经过x_{0}时,f''(x)变号,则(x_{0},f(x_{0}))为拐点。

Th3: (拐点的判别定理2)设f(x)x_{0}点的某邻域内有三阶导数,且f''(x) = 0f'''(x) \neq 0,则(x_{0},f(x_{0}))为拐点。

15.弧微分

\text{dS} = \sqrt{1 + y'^{2}}\text{dx}

16.曲率

曲线y = f(x)在点(x,y)处的曲率{% raw %}k = \frac{\left| y'' \right|}{{(1 + y'^{2})}^{\frac{3}{2}}}.{% endraw %} 对于参数方程:

{% raw %}\left\{ \begin{matrix} & x = \varphi(t) \\ & y = \psi(t) \\ \end{matrix} \right.\ ,k = \frac{\left| \varphi'(t)\psi''(t) - \varphi''(t)\psi'(t) \right|}{{\lbrack\varphi'^{2}(t) + \psi'^{2}(t)\rbrack}^{\frac{3}{2}}}{% endraw %}

17.曲率半径

曲线在点M处的曲率k(k \neq 0)与曲线在点M处的曲率半径\rho有如下关系:\rho = \frac{1}{k}

线性代数

行列式

1.行列式按行(列)展开定理

(1) 设A = \left( a_{\text{ij}} \right)_{n \times n},则:a_{i1}A_{j1} + a_{i2}A_{j2} + \cdots + a_{\text{in}}A_{\text{jn}} = \left\{ \begin{matrix} & \left| A \right|,i = j \\ & 0,i \neq j \\ \end{matrix} \right.\

a_{1i}A_{1j} + a_{2i}A_{2j} + \cdots + a_{\text{ni}}A_{\text{nj}} = \left\{ \begin{matrix} & \left| A \right|,i = j \\ & 0,i \neq j \\ \end{matrix} \right.\

AA^{*} = A^{*}A = \left| A \right|E,其中:A^{*} = \begin{pmatrix} A_{11} & A_{12} & \ldots & A_{1n} \\ A_{21} & A_{22} & \ldots & A_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ A_{n1} & A_{n2} & \ldots & A_{\text{nn}} \\ \end{pmatrix} = (A_{\text{ji}}) = {(A_{\text{ij}})}^{T}

D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n - 1} & x_{2}^{n - 1} & \ldots & x_{n}^{n - 1} \\ \end{vmatrix} = = \prod_{1 \leq j < i \leq n}^{}\,(x_{i} - x_{j})

(2) 设A,Bn阶方阵,则\left| \text{AB} \right| = \left| A \right|\left| B \right| = \left| B \right|\left| A \right| = \left| \text{BA} \right|,但\left| A \pm B \right| = \left| A \right| \pm \left| B \right|不一定成立。

(3) \left| \text{kA} \right| = k^{n}\left| A \right|,An阶方阵。

(4) 设An阶方阵,|A^{T}| = |A|;|A^{- 1}| = |A|^{- 1}(若A可逆),|A^{*}| = |A|^{n - 1}

n \geq 2

(5) \left| \begin{matrix} & \text{A\quad O} \\ & \text{O\quad B} \\ \end{matrix} \right| = \left| \begin{matrix} & \text{A\quad C} \\ & \text{O\quad B} \\ \end{matrix} \right| = \left| \begin{matrix} & \text{A\quad O} \\ & \text{C\quad B} \\ \end{matrix} \right| = \left| A||B| \right.\ A,B为方阵,但\left| \begin{matrix} & \text{O\quad\quad}A_{m \times m} \\ & B_{n \times n}\text{\quad O} \\ \end{matrix} \right| = ({- 1)}^{\text{mn}}\centerdot|A||B|

(6) 范德蒙行列式D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n - 1} & x_{2}^{n - 1} & \ldots & x_{n}^{n - 1} \\ \end{vmatrix} = = \prod_{1 \leq j < i \leq n}^{}\,(x_{i} - x_{j})

An阶方阵,\lambda_{i}(i = 1,2\cdots,n)An个特征值,则 |A| = \prod_{i = 1}^{n}\lambda_{i}

矩阵

矩阵:m \times n个数a_{\text{ij}}排成mn列的表格\begin{bmatrix} & a_{11}\quad a_{12}\quad\cdots\quad a_{1n} \\ & a_{21}\quad a_{22}\quad\cdots\quad a_{2n} \\ & \quad\cdots\cdots\cdots\cdots\cdots \\ & a_{m1}\quad a_{m2}\quad\cdots\quad a_{\text{mn}} \\ \end{bmatrix}称为矩阵,简记为A,或者\left( a_{\text{ij}} \right)_{m \times n} 。若m = n,则称An阶矩阵或n阶方阵。

矩阵的线性运算

1.矩阵的加法

A = (a_{\text{ij}}),B = (b_{\text{ij}})是两个m \times n矩阵,则m \times n 矩阵C = (c_{\text{ij}}) = a_{\text{ij}} + b_{\text{ij}}称为矩阵AB的和,记为A + B = C

2.矩阵的数乘

A = (a_{\text{ij}})m \times n矩阵,k是一个常数,则m \times n矩阵(ka_{\text{ij}})称为数k与矩阵A的数乘,记为\text{kA}

3.矩阵的乘法

A = (a_{\text{ij}})m \times n矩阵,B = (b_{\text{ij}})n \times s矩阵,那么m \times s矩阵C = (c_{\text{ij}}),其中 c_{\text{ij}} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{\text{in}}b_{\text{nj}} = \sum_{k = 1}^{n}{a_{\text{ik}}b_{\text{kj}}}称为\text{AB}的乘积,记为C = AB

4. \mathbf{A}^{\mathbf{T}}\mathbf{A}^{\mathbf{- 1}}\mathbf{A}^{\mathbf{*}}三者之间的关系

(1) {(A^{T})}^{T} = A,{(AB)}^{T} = B^{T}A^{T},{(kA)}^{T} = kA^{T},{(A \pm B)}^{T} = A^{T} \pm B^{T}

(2) \left( A^{- 1} \right)^{- 1} = A,\left( \text{AB} \right)^{- 1} = B^{- 1}A^{- 1},\left( \text{kA} \right)^{- 1} = \frac{1}{k}A^{- 1},

{(A \pm B)}^{- 1} = A^{- 1} \pm B^{- 1}不一定成立。

(3) \left( A^{*} \right)^{*} = |A|^{n - 2}\ A\ \ (n \geq 3)\left( \text{AB} \right)^{*} = B^{*}A^{*}, \left( \text{kA} \right)^{*} = k^{n - 1}A^{*}\text{\ \ }\left( n \geq 2 \right)

\left( A \pm B \right)^{*} = A^{*} \pm B^{*}不一定成立。

(4) {(A^{- 1})}^{T} = {(A^{T})}^{- 1},\ \left( A^{- 1} \right)^{*} = {(AA^{*})}^{- 1},{(A^{*})}^{T} = \left( A^{T} \right)^{*}

5.有关\mathbf{A}^{\mathbf{*}}的结论

(1) AA^{*} = A^{*}A = |A|E

(2) |A^{*}| = |A|^{n - 1}\ (n \geq 2),\ \ \ \ {(kA)}^{*} = k^{n - 1}A^{*},{\text{\ \ }\left( A^{*} \right)}^{*} = |A|^{n - 2}A(n \geq 3)

(3) 若A可逆,则A^{*} = |A|A^{- 1},{(A^{*})}^{*} = \frac{1}{|A|}A

(4) 若An阶方阵,则:

r(A^{*}) = \left\{ \begin{matrix} & n,\quad r(A) = n \\ & 1,\quad r(A) = n - 1 \\ & 0,\quad r(A) < n - 1 \\ \end{matrix} \right.\

6.有关\mathbf{A}^{\mathbf{- 1}}的结论

A可逆\Leftrightarrow AB = E; \Leftrightarrow |A| \neq 0; \Leftrightarrow r(A) = n;

\Leftrightarrow A可以表示为初等矩阵的乘积;\Leftrightarrow A无零特征值; \Leftrightarrow Ax = 0\ 只有零解

7.有关矩阵秩的结论

(1) 秩r(A)=行秩=列秩;

(2) r(A_{m \times n}) \leq \min(m,n);

(3) A \neq 0 \Rightarrow r(A) \geq 1

(4) r(A \pm B) \leq r(A) + r(B);

(5) 初等变换不改变矩阵的秩

(6) r(A) + r(B) - n \leq r(AB) \leq \min(r(A),r(B)),特别若AB = O

则:r(A) + r(B) \leq n

(7) 若A^{- 1}存在\Rightarrow r(AB) = r(B);B^{- 1}存在 \Rightarrow r(AB) = r(A);

r(A_{m \times n}) = n \Rightarrow r(AB) = r(B);r(A_{m \times s}) = n \Rightarrow r(AB) = r\left( A \right)

(8) r(A_{m \times s}) = n \Leftrightarrow Ax = 0只有零解

8.分块求逆公式

\begin{pmatrix} A & O \\ O & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix} A^{- 1} & O \\ O & B^{- 1} \\ \end{pmatrix}\begin{pmatrix} A & C \\ O & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix} & A^{- 1}\quad - A^{- 1}CB^{- 1} \\ & \text{O\quad\quad\quad}B^{- 1} \\ \end{pmatrix}

\begin{pmatrix} A & O \\ C & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix} & A^{- 1}\text{\quad\quad\:\:\quad O} \\ & - B^{- 1}CA^{- 1}\quad B^{- 1} \\ \end{pmatrix}\begin{pmatrix} O & A \\ B & O \\ \end{pmatrix}^{- 1} = \begin{pmatrix} O & B^{- 1} \\ A^{- 1} & O \\ \end{pmatrix}

这里AB均为可逆方阵。

向量

1.有关向量组的线性表示

(1) \alpha_{1},\alpha_{2},\cdots,\alpha_{s}线性相关\Leftrightarrow至少有一个向量可以用其余向量线性表示。

(2) \alpha_{1},\alpha_{2},\cdots,\alpha_{s}线性无关,\alpha_{1},\alpha_{2},\cdots,\alpha_{s}\beta线性相关\Leftrightarrow \beta可以由\alpha_{1},\alpha_{2},\cdots,\alpha_{s}唯一线性表示。

(3) \beta可以由\alpha_{1},\alpha_{2},\cdots,\alpha_{s}线性表示 \Leftrightarrow r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) = r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s},\beta)

2.有关向量组的线性相关性

(1)部分相关,整体相关;整体无关,部分无关.

(2) ① nn维向量 \alpha_{1},\alpha_{2}\cdots\alpha_{n}线性无关\Leftrightarrow \left| \left\lbrack \alpha_{1}\alpha_{2}\cdots\alpha_{n} \right\rbrack \right| \neq 0nn维向量\alpha_{1},\alpha_{2}\cdots\alpha_{n}线性相关 \Leftrightarrow |\lbrack\alpha_{1},\alpha_{2},\cdots,\alpha_{n}\rbrack| = 0

n + 1n维向量线性相关。

③ 若\alpha_{1},\alpha_{2}\cdots\alpha_{S}线性无关,则添加分量后仍线性无关;或一组向量线性相关,去掉某些分量后仍线性相关。

3.有关向量组的线性表示

(1) \alpha_{1},\alpha_{2},\cdots,\alpha_{s}线性相关\Leftrightarrow至少有一个向量可以用其余向量线性表示。

(2) \alpha_{1},\alpha_{2},\cdots,\alpha_{s}线性无关,\alpha_{1},\alpha_{2},\cdots,\alpha_{s}\beta线性相关\Leftrightarrow \beta 可以由\alpha_{1},\alpha_{2},\cdots,\alpha_{s}唯一线性表示。

(3) \beta可以由\alpha_{1},\alpha_{2},\cdots,\alpha_{s}线性表示 \Leftrightarrow r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) = r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s},\beta)

4.向量组的秩与矩阵的秩之间的关系

r(A_{m \times n}) = r,则A的秩r(A)A的行列向量组的线性相关性关系为:

(1) 若r(A_{m \times n}) = r = m,则A的行向量组线性无关。

(2) 若r(A_{m \times n}) = r < m,则A的行向量组线性相关。

(3) 若r(A_{m \times n}) = r = n,则A的列向量组线性无关。

(4) 若r(A_{m \times n}) = r < n,则A的列向量组线性相关。

5.\mathbf{n}维向量空间的基变换公式及过渡矩阵

\alpha_{1},\alpha_{2},\cdots,\alpha_{n}\beta_{1},\beta_{2},\cdots,\beta_{n}是向量空间V的两组基,则基变换公式为:

(\beta_{1},\beta_{2},\cdots,\beta_{n}) = (\alpha_{1},\alpha_{2},\cdots,\alpha_{n})\begin{bmatrix} & c_{11}\quad c_{12}\quad\cdots\quad c_{1n} \\ & c_{21}\quad c_{22}\quad\cdots\quad c_{2n} \\ & \quad\cdots\cdots\cdots\cdots\cdots \\ & c_{n1}\quad c_{n2}\quad\cdots\quad c_{\text{nn}} \\ \end{bmatrix} = (\alpha_{1},\alpha_{2},\cdots,\alpha_{n})C

其中C是可逆矩阵,称为由基\alpha_{1},\alpha_{2},\cdots,\alpha_{n}到基\beta_{1},\beta_{2},\cdots,\beta_{n}的过渡矩阵。

6.坐标变换公式

若向量\gamma在基\alpha_{1},\alpha_{2},\cdots,\alpha_{n}与基\beta_{1},\beta_{2},\cdots,\beta_{n}的坐标分别是 X = {(x_{1},x_{2},\cdots,x_{n})}^{T}

Y = \left( y_{1},y_{2},\cdots,y_{n} \right)^{T} 即: \gamma = x_{1}\alpha_{1} + x_{2}\alpha_{2} + \cdots + x_{n}\alpha_{n} = y_{1}\beta_{1} + y_{2}\beta_{2} + \cdots + y_{n}\beta_{n},则向量坐标变换公式为X = CYY = C^{- 1}X ,其中C是从基\alpha_{1},\alpha_{2},\cdots,\alpha_{n}到基\beta_{1},\beta_{2},\cdots,\beta_{n}的过渡矩阵。

7.向量的内积

(\alpha,\beta) = a_{1}b_{1} + a_{2}b_{2} + \cdots + a_{n}b_{n} = \alpha^{T}\beta = \beta^{T}\alpha

8.Schmidt正交化

\alpha_{1},\alpha_{2},\cdots,\alpha_{s}线性无关,则可构造\beta_{1},\beta_{2},\cdots,\beta_{s}使其两两正交,且\beta_{i}仅是\alpha_{1},\alpha_{2},\cdots,\alpha_{i}的线性组合(i = 1,2,\cdots,n),再把\beta_{i}单位化,记\gamma_{i} = \frac{\beta_{i}}{\left| \beta_{i} \right|},则\gamma_{1},\gamma_{2},\cdots,\gamma_{i}是规范正交向量组。其中 \beta_{1} = \alpha_{1}\beta_{2} = \alpha_{2} - \frac{(\alpha_{2},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1}\beta_{3} = \alpha_{3} - \frac{(\alpha_{3},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1} - \frac{(\alpha_{3},\beta_{2})}{(\beta_{2},\beta_{2})}\beta_{2}

............

\beta_{s} = \alpha_{s} - \frac{(\alpha_{s},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1} - \frac{(\alpha_{s},\beta_{2})}{(\beta_{2},\beta_{2})}\beta_{2} - \cdots - \frac{(\alpha_{s},\beta_{s - 1})}{(\beta_{s - 1},\beta_{s - 1})}\beta_{s - 1}

9.正交基及规范正交基

向量空间一组基中的向量如果两两正交,就称为正交基;若正交基中每个向量都是单位向量,就称其为规范正交基。

线性方程组

1.克莱姆法则

线性方程组\left\{ \begin{matrix} & a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1} \\ & a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} = b_{2} \\ & \quad\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots \\ & a_{n1}x_{1} + a_{n2}x_{2} + \cdots + a_{\text{nn}}x_{n} = b_{n} \\ \end{matrix} \right.\ ,如果系数行列式D = \left| A \right| \neq 0,则方程组有唯一解, x_{1} = \frac{D_{1}}{D},x_{2} = \frac{D_{2}}{D},\cdots,x_{n} = \frac{D_{n}}{D},其中D_{j}是把D中第j列元素换成方程组右端的常数列所得的行列式。

2. n阶矩阵A可逆\Leftrightarrow Ax = 0只有零解。\Leftrightarrow \forall b,Ax = b总有唯一解,一般地,r(A_{m \times n}) = n \Leftrightarrow Ax = 0只有零解。

3.非奇次线性方程组有解的充分必要条件,线性方程组解的性质和解的结构

(1) 设Am \times n矩阵,若r(A_{m \times n}) = m,则对Ax = b而言必有r(A) = r(A \vdots b) = m,从而Ax = b有解。

(2) 设x_{1},x_{2},\cdots x_{s}Ax = b的解,则k_{1}x_{1} + k_{2}x_{2} + \cdots + k_{s}x_{s}k_{1} + k_{2} + \cdots + k_{s} = 1时仍为Ax = b的解;但当k_{1} + k_{2} + \cdots + k_{s} = 0时,则为Ax = 0的解。特别\frac{x_{1} + x_{2}}{2}Ax = b的解;$2x_{3} - (x_{1} + x_{2})Ax = 0$的解。

(3) 非齐次线性方程组\text{Ax} = b无解\Leftrightarrow r(A) + 1 = r(\overline{A}) \Leftrightarrow b不能由A的列向量\alpha_{1},\alpha_{2},\cdots,\alpha_{n}线性表示。

4.奇次线性方程组的基础解系和通解,解空间,非奇次线性方程组的通解

(1) 齐次方程组\text{Ax} = 0恒有解(必有零解)。当有非零解时,由于解向量的任意线性组合仍是该齐次方程组的解向量,因此\text{Ax} = 0的全体解向量构成一个向量空间,称为该方程组的解空间,解空间的维数是n - r(A),解空间的一组基称为齐次方程组的基础解系。

(2) \eta_{1},\eta_{2},\cdots,\eta_{t}\text{Ax} = 0的基础解系,即:

1) \eta_{1},\eta_{2},\cdots,\eta_{t}\text{Ax} = 0的解;

2) \eta_{1},\eta_{2},\cdots,\eta_{t}线性无关;

3) \text{Ax} = 0的任一解都可以由\eta_{1},\eta_{2},\cdots,\eta_{t}线性表出. k_{1}\eta_{1} + k_{2}\eta_{2} + \cdots + k_{t}\eta_{t}\text{Ax} = 0的通解,其中k_{1},k_{2},\cdots,k_{t}是任意常数。

矩阵的特征值和特征向量

1.矩阵的特征值和特征向量的概念及性质

(1) 设\lambdaA的一个特征值,则 \text{kA},\text{aA} + \text{bE},A^{2},A^{m},f(A),A^{T},A^{- 1},A^{*}有一个特征值分别为 \text{kλ},\text{aλ} + b,\lambda^{2},\lambda^{m},f(\lambda),\lambda,\lambda^{- 1},\frac{|A|}{\lambda},且对应特征向量相同(A^{T} 例外)。

(2) 若\lambda_{1},\lambda_{2},\cdots,\lambda_{n}An个特征值,则\sum_{i = 1}^{n}\lambda_{i} = \sum_{i = 1}^{n}a_{\text{ii}},\prod_{i = 1}^{n}\lambda_{i} = |A| ,从而|A| \neq 0 \Leftrightarrow A没有特征值。

(3) 设\lambda_{1},\lambda_{2},\cdots,\lambda_{s}As个特征值,对应特征向量为 \alpha_{1},\alpha_{2},\cdots,\alpha_{s}

若: \alpha = k_{1}\alpha_{1} + k_{2}\alpha_{2} + \cdots + k_{s}\alpha_{s} ,

则: A^{n}\alpha = k_{1}A^{n}\alpha_{1} + k_{2}A^{n}\alpha_{2} + \cdots + k_{s}A^{n}\alpha_{s} = k_{1}\lambda_{1}^{n}\alpha_{1} + k_{2}\lambda_{2}^{n}\alpha_{2} + \cdots k_{s}\lambda_{s}^{n}\alpha_{s}

2.相似变换、相似矩阵的概念及性质

(1) 若A \sim B,则

1) A^{T} \sim B^{T},A^{- 1} \sim B^{- 1},,A^{*} \sim B^{*}

2) |A| = |B|,\sum_{i = 1}^{n}A_{\text{ii}} = \sum_{i = 1}^{n}b_{\text{ii}},r(A) = r(B)

3) |\lambda E - A| = |\lambda E - B|,对\forall\lambda成立

3.矩阵可相似对角化的充分必要条件

(1) 设An阶方阵,则A可对角化\Leftrightarrow对每个k_{i}重根特征值\lambda_{i},有n - r(\lambda_{i}E - A) = k_{i}

(2) 设A可对角化,则由P^{- 1}\text{AP} = \Lambda,A = \text{PΛ}P^{- 1},从而A^{n} = P\Lambda^{n}P^{- 1}

(3) 重要结论

1) 若A \sim B,C \sim D,则\begin{bmatrix} & A\quad O \\ & O\quad C \\ \end{bmatrix} \sim \begin{bmatrix} & B\quad O \\ & O\quad D \\ \end{bmatrix}.

2) 若A \sim B,则f(A) \sim f(B),\left| f(A) \right| \sim \left| f(B) \right|,其中f(A)为关于n阶方阵A的多项式。

3) 若A为可对角化矩阵,则其非零特征值的个数(重根重复计算)=秩(A)

4.实对称矩阵的特征值、特征向量及相似对角阵

(1)相似矩阵:设A,B为两个n阶方阵,如果存在一个可逆矩阵P,使得B = P^{- 1}\text{AP}成立,则称矩阵AB相似,记为A \sim B

(2)相似矩阵的性质:如果A \sim B则有:

1) A^{T} \sim B^{T}

2) A^{- 1} \sim B^{- 1} (若AB均可逆)

3) A^{k} \sim B^{k}k为正整数)

4) \left| \text{λE} - A \right| = \left| \text{λE} - B \right|,从而A,B 有相同的特征值

5) \left| A \right| = \left| B \right|,从而A,B同时可逆或者不可逆

6) 秩\left( A \right) =\left( B \right),\left| \text{λE} - A \right| = \left| \text{λE} - B \right|A,B不一定相似

二次型

1.\mathbf{n}个变量\mathbf{x}_{\mathbf{1}}\mathbf{,}\mathbf{x}_{\mathbf{2}}\mathbf{,\cdots,}\mathbf{x}_{\mathbf{n}}的二次齐次函数

f(x_{1},x_{2},\cdots,x_{n}) = \sum_{i = 1}^{n}{\sum_{j = 1}^{n}{a_{\text{ij}}x_{i}y_{j}}},其中a_{\text{ij}} = a_{\text{ji}}(i,j = 1,2,\cdots,n),称为n元二次型,简称二次型. 若令x = \ \begin{bmatrix} x_{1} \\ x_{1} \\ \vdots \\ x_{n} \\ \end{bmatrix},A = \begin{bmatrix} & a_{11}\quad a_{12}\quad\cdots\quad a_{1n} \\ & a_{21}\quad a_{22}\quad\cdots\quad a_{2n} \\ & \quad\cdots\cdots\cdots\cdots\cdots \\ & a_{n1}\quad a_{n2}\quad\cdots\quad a_{\text{nn}} \\ \end{bmatrix},这二次型f可改写成矩阵向量形式f = x^{T}\text{Ax}。其中A称为二次型矩阵,因为a_{\text{ij}} = a_{\text{ji}}(i,j = 1,2,\cdots,n),所以二次型矩阵均为对称矩阵,且二次型与对称矩阵一一对应,并把矩阵A的秩称为二次型的秩。

2.惯性定理,二次型的标准形和规范形

(1) 惯性定理

对于任一二次型,不论选取怎样的合同变换使它化为仅含平方项的标准型,其正负惯性指数与所选变换无关,这就是所谓的惯性定理。

(2) 标准形

二次型f = \left( x_{1},x_{2},\cdots,x_{n} \right) = x^{T}\text{Ax}经过合同变换x = \text{Cy}化为f = x^{T}\text{Ax} = y^{T}C^{T}\text{AC}

y = \sum_{i = 1}^{r}{d_{i}y_{i}^{2}}称为 f(r \leq n)的标准形。在一般的数域内,二次型的标准形不是唯一的,与所作的合同变换有关,但系数不为零的平方项的个数由r(A的秩)唯一确定。

(3) 规范形

任一实二次型f都可经过合同变换化为规范形f = z_{1}^{2} + z_{2}^{2} + \cdots + z_{p}^{2} - z_{p + 1}^{2} - \cdots - z_{r}^{2},其中rA的秩,p为正惯性指数,r - p为负惯性指数,且规范型唯一。

3.用正交变换和配方法化二次型为标准形,二次型及其矩阵的正定性

A正定\Rightarrow \text{kA}(k > 0),A^{T},A^{- 1},A^{*}正定;|A| > 0,A可逆;a_{\text{ii}} > 0,且|A_{\text{ii}}| > 0

AB正定\Rightarrow A + B正定,但\text{AB}\text{BA}不一定正定

A正定\Leftrightarrow f(x) = x^{T}\text{Ax} > 0,\forall x \neq 0

\Leftrightarrow A的各阶顺序主子式全大于零

\Leftrightarrow A的所有特征值大于零

\Leftrightarrow A的正惯性指数为n

\Leftrightarrow存在可逆阵P使A = P^{T}P

\Leftrightarrow存在正交矩阵Q,使Q^{T}\text{AQ} = Q^{- 1}\text{AQ} = \begin{pmatrix} \lambda_{1} & & \\ \begin{matrix} & \\ & \\ \end{matrix} & \ddots & \\ & & \lambda_{n} \\ \end{pmatrix},

其中\lambda_{i} > 0,i = 1,2,\cdots,n.正定\Rightarrow \text{kA}(k > 0),A^{T},A^{- 1},A^{*}正定; |A| > 0,A可逆;a_{\text{ii}} > 0,且|A_{\text{ii}}| > 0

概率论和数理统计

随机事件和概率

1.事件的关系与运算

(1) 子事件:A \subset B,若A发生,则B发生。

(2) 相等事件:A = B,即A \subset B,且B \subset A

(3) 和事件:A\bigcup B(或A + B),AB中至少有一个发生。

(4) 差事件:A - BA发生但B不发生。

(5) 积事件:A\bigcap B(或\text{AB}),AB同时发生。

(6) 互斥事件(互不相容):A\bigcap B=\varnothing

(7) 互逆事件(对立事件): A\bigcap B = \varnothing,A\bigcup B = \Omega,A = \overline{B},B = \overline{A}

2.运算律

(1) 交换律:A\bigcup B = B\bigcup A,A\bigcap B = B\bigcap A

(2) 结合律:(A\bigcup B)\bigcup C = A\bigcup(B\bigcup C)(A\bigcap B)\bigcap C = A\bigcap(B\bigcap C)

(3) 分配律:(A\bigcup B)\bigcap C = (A\bigcap C)\bigcup(B\bigcap C)

3.德\mathbf{.}摩根律

\overline{A\bigcup B} = \overline{A}\bigcap\overline{B} \overline{A\bigcap B} = \overline{A}\bigcup\overline{B}

4.完全事件组

A_{1}A_{2}\cdots A_{n}两两互斥,且和事件为必然事件,即A_{i}\bigcap A_{j} = \varnothing,i \neq j,\underset{i = 1}{\bigcup^{n}}\, = \Omega

5.概率的基本概念

(1) 概率:事件发生的可能性大小的度量,其严格定义如下:

概率P(g)为定义在事件集合上的满足下面3个条件的函数:

1)对任何事件AP(A) \geq 0

2)对必然事件\OmegaP(\Omega) = 1

3)对A_{1}A_{2}\cdots A_{n},\cdots ,若A_{i}A_{j} = \varnothing(i \neq j),则:P(\underset{i = 1}{\bigcup^{\infty}}\, A_{i}) = \sum_{i = 1}^{\infty}{P(A).}

(2) 概率的基本性质

1) P(\overline{A}) = 1 - P(A);

2) P(A - B) = P(A) - P(AB);

3) P(A\bigcup B) = P(A) + P(B) - P(AB) 特别,当B \subset A时,P(A - B) = P(A) - P(B)P(B) \leq P(A)P(A\bigcup B\bigcup C) = P(A) + P(B) + P(C) - P(AB) - P(BC) - P(AC) + P(ABC) 4) 若A_{1},A_{2},\cdots,A_{n}两两互斥,则P(\underset{i = 1}{\bigcup^{n}}\, A_{i}) = \sum_{i = 1}^{n}{(P(A_{i})}

(3) 古典型概率: 实验的所有结果只有有限个, 且每个结果发生的可能性相同,其概率计算公式: P(A) = \frac{事件A发生的基本事件数}{基本事件总数}

(4) 几何型概率: 样本空间\Omega为欧氏空间中的一个区域, 且每个样本点的出现具有等可能性,其概率计算公式:P(A) = \frac{A的度量(长度、面积、体积)}{\Omega 的度量(长度、面积、体积)}

6.概率的基本公式

(1) 条件概率: P(B|A) = \frac{P(AB)}{P(A)} ,表示A发生的条件下,B发生的概率

(2) 全概率公式: P(A) = \sum_{i = 1}^{n}{P(A|B_{i})P(B_{i}),B_{i}B_{j}} = \varnothing,i \neq j,\underset{i = 1}{\bigcup^{n}}\, B_{i} = \Omega.

(3) Bayes公式:

P(B_{j}|A) = \frac{P(A|B_{j})P(B_{j})}{\sum_{i = 1}^{n}{P(A|B_{i})P(B_{i})}},j = 1,2,\cdots,n

注:上述公式中事件B_{i}的个数可为可列个.

(4)乘法公式: P(A_{1}A_{2}) = P(A_{1})P(A_{2}|A_{1}) = P(A_{2})P(A_{1}|A_{2}) P(A_{1}A_{2}\cdots A_{n}) = P(A_{1})P(A_{2}|A_{1})P(A_{3}|A_{1}A_{2})\cdots P(A_{n}|A_{1}A_{2}\cdots A_{n - 1})

7.事件的独立性

(1) A与B相互独立\Leftrightarrow P\left( \text{AB} \right) = P\left( A \right)P\left( B \right)

(2) A,B,C两两独立 \Leftrightarrow P(\text{AB}) = P(A)P(B);P(\text{BC}) = P(B)P(C); P(\text{AC}) = P(A)P(C);

(3) A,B,C相互独立 \Leftrightarrow P(\text{AB}) = P(A)P(B); P(\text{BC}) = P(B)P(C); P(\text{AC}) = P(A)P(C); P(\text{ABC}) = P(A)P(B)P(C).

8.独立重复试验

将某试验独立重复n次,若每次实验中事件A发生的概率为p,则n次试验中A发生k次的概率为: P\left( X = k \right) = C_{n}^{k}p^{k}\left( 1 - p \right)^{n - k}\

9.重要公式与结论

(1) P\left( \overline{A} \right) = 1 - P\left( A \right)

(2) P(A\bigcup B) = P(A) + P(B) - P(\text{AB})

P(A\bigcup B\bigcup C) = P(A) + P(B) + P(C) - P(\text{AB}) - P(\text{BC}) - P(\text{AC}) + P(\text{ABC})

(3) P\left( A - B \right) = P\left( A \right) - P\left( \text{AB} \right)

(4) P(A\overline{B}) = P(A) - P(\text{AB}),P(A) = P(\text{AB}) + P(A\overline{B}), P(A\bigcup B) = P(A) + P(\overline{A}B) = P(\text{AB}) + P(A\overline{B}) + P(\overline{A}B)

(5) 条件概率P(\centerdot|B)满足概率的所有性质,

例如:. P({\overline{A}}_{1}|B) = 1 - P(A_{1}|B) P(A_{1}\bigcup A_{2}|B) = P(A_{1}|B) + P(A_{2}|B) - P(A_{1}A_{2}|B) P(A_{1}A_{2}|B) = P(A_{1}|B)P(A_{2}|A_{1}B)

(6) 若A_{1},A_{2},\cdots,A_{n}相互独立,则P(\bigcap_{i = 1}^{n}A_{i}) = \prod_{i = 1}^{n}{P(A_{i})}, P(\bigcup_{i = 1}^{n}A_{i}) = \prod_{i = 1}^{n}{(1 - P(A_{i}))}

(7) 互斥、互逆与独立性之间的关系: A与B互逆\RightarrowA与B互斥,但反之不成立,A与B互 斥(或互逆)且均非零概率事件\RightarrowA与B不独立.

(8) 若A_{1},A_{2},\cdots,A_{m},B_{1},B_{2},\cdots,B_{n}相互独立,则f(A_{1},A_{2},\cdots,A_{m})g(B_{1},B_{2},\cdots,B_{n})也相互独立,其中f(\centerdot),g(\centerdot)分别表示对相应事件做任意事件运算后所得的事件,另外,概率为1(或0)的事件与任何事件相互独立.

随机变量及其概率分布

1.随机变量及概率分布

取值带有随机性的变量,严格地说是定义在样本空间上,取值于实数的函数称为随机变量,概率分布通常指分布函数或分布律

2.分布函数的概念与性质

定义: F(x) = P(X \leq x), - \infty < x < + \infty

性质:(1)$0 \leq F(x) \leq 1 (2)F(x)$单调不减

(3)右连续F(x + 0) = F(x) (4)F( - \infty) = 0,F( + \infty) = 1

3.离散型随机变量的概率分布

P(X = x_{i}) = p_{i},i = 1,2,\cdots,n,\cdots\quad\quad p_{i} \geq 0,\sum_{i = 1}^{\infty}p_{i} = 1

4.连续型随机变量的概率密度

概率密度f(x);非负可积,且:(1)f(x) \geq 0, (2)\int_{- \infty}^{+ \infty}{f(x)\text{dx} = 1} (3)xf(x)的连续点,则:

f(x) = F'(x)分布函数F(x) = \int_{- \infty}^{x}{f(t)\text{dt}}

5.常见分布

(1) 0-1分布:P(X = k) = p^{k}{(1 - p)}^{1 - k},k = 0,1

(2) 二项分布:B(n,p)P(X = k) = C_{n}^{k}p^{k}{(1 - p)}^{n - k},k = 0,1,\cdots,n

(3) Poisson分布:p(\lambda)P(X = k) = \frac{\lambda^{k}}{k!}e^{- \lambda},\lambda > 0,k = 0,1,2\cdots

(4) 均匀分布U(a,b)f(x) = \left\{ \begin{matrix} & \frac{1}{b - a},a < x < b \\ & 0, \\ \end{matrix} \right.\

(5) 正态分布:{% raw %}N(\mu,\sigma^{2}): \varphi(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{- \frac{{(x - \mu)}^{2}}{2\sigma^{2}}},\sigma > 0, - \infty < x < + \infty{% endraw %}

(6)指数分布:E(\lambda):f(x) = \left\{ \begin{matrix} & \lambda e^{- \text{λx}},x > 0,\lambda > 0 \\ & 0, \\ \end{matrix} \right.\

(7)几何分布:G(p):P(X = k) = {(1 - p)}^{k - 1}p,0 < p < 1,k = 1,2,\cdots.

(8)超几何分布: H(N,M,n):P(X = k) = \frac{C_{M}^{k}C_{N - M}^{n - k}}{C_{N}^{n}},k = 0,1,\cdots,min(n,M)

6.随机变量函数的概率分布

(1)离散型:P(X = x_{1}) = p_{i},Y = g(X)

则: P(Y = y_{j}) = \sum_{g(x_{i}) = y_{i}}^{}{P(X = x_{i})}

(2)连续型:X\widetilde{\ }f_{X}(x),Y = g(x)

则:F_{y}(y) = P(Y \leq y) = P(g(X) \leq y) = \int_{g(x) \leq y}^{}{f_{x}(x)dx}f_{Y}(y) = F'_{Y}(y)

7.重要公式与结论

(1) X\sim N(0,1) \Rightarrow \varphi(0) = \frac{1}{\sqrt{2\pi}},\Phi(0) = \frac{1}{2}, \Phi( - a) = P(X \leq - a) = 1 - \Phi(a)

(2) X\sim N\left( \mu,\sigma^{2} \right) \Rightarrow \frac{X - \mu}{\sigma}\sim N\left( 0,1 \right),P(X \leq a) = \Phi(\frac{a - \mu}{\sigma})

(3) X\sim E(\lambda) \Rightarrow P(X > s + t|X > s) = P(X > t)

(4) X\sim G(p) \Rightarrow P(X = m + k|X > m) = P(X = k)

(5) 离散型随机变量的分布函数为阶梯间断函数;连续型随机变量的分布函数为连续函数,但不一定为处处可导函数。

(6) 存在既非离散也非连续型随机变量。

多维随机变量及其分布

1.二维随机变量及其联合分布

由两个随机变量构成的随机向量(X,Y), 联合分布为F(x,y) = P(X \leq x,Y \leq y)

2.二维离散型随机变量的分布

(1) 联合概率分布律 P\{ X = x_{i},Y = y_{j}\} = p_{\text{ij}};i,j = 1,2,\cdots

(2) 边缘分布律 p_{i \cdot} = \sum_{j = 1}^{\infty}p_{\text{ij}},i = 1,2,\cdots p_{\cdot j} = \sum_{i}^{\infty}p_{\text{ij}},j = 1,2,\cdots

(3) 条件分布律 P\{ X = x_{i}|Y = y_{j}\} = \frac{p_{\text{ij}}}{p_{\cdot j}} P\{ Y = y_{j}|X = x_{i}\} = \frac{p_{\text{ij}}}{p_{i \cdot}}

3. 二维连续性随机变量的密度

(1) 联合概率密度f(x,y):

1) f(x,y) \geq 0 2) \int_{- \infty}^{+ \infty}{\int_{- \infty}^{+ \infty}{f(x,y)dxdy}} = 1

(2) 分布函数:F(x,y) = \int_{- \infty}^{x}{\int_{- \infty}^{y}{f(u,v)dudv}}

(3) 边缘概率密度: f_{X}\left( x \right) = \int_{- \infty}^{+ \infty}{f\left( x,y \right)\text{dy}} f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx}

(4) 条件概率密度:f_{X|Y}\left( x \middle| y \right) = \frac{f\left( x,y \right)}{f_{Y}\left( y \right)} f_{Y|X}(y|x) = \frac{f(x,y)}{f_{X}(x)}

4.常见二维随机变量的联合分布

(1) 二维均匀分布:(x,y) \sim U(D) ,f(x,y) = \left\{ \begin{matrix} & \frac{1}{S(D)},(x,y) \in D \\ & 0,\ \ 其他 \\ \end{matrix} \right.\

(2) 二维正态分布:(X,Y)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho)

{% raw %}f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1 - \rho^{2}}}.\exp\left\{ \frac{- 1}{2(1 - \rho^{2})}\lbrack\frac{{(x - \mu_{1})}^{2}}{\sigma_{1}^{2}} - 2\rho\frac{(x - \mu_{1})(y - \mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{{(y - \mu_{2})}^{2}}{\sigma_{2}^{2}}\rbrack \right\}{% endraw %}

5.随机变量的独立性和相关性

XY的相互独立:\Leftrightarrow F\left( x,y \right) = F_{X}\left( x \right)F_{Y}\left( y \right):

\Leftrightarrow p_{\text{ij}} = p_{i \cdot} \cdot p_{\cdot j}(离散型) \Leftrightarrow f\left( x,y \right) = f_{X}\left( x \right)f_{Y}\left( y \right)(连续型)

XY的相关性:

相关系数\rho_{\text{XY}} = 0时,称XY不相关, 否则称XY相关

6.两个随机变量简单函数的概率分布

离散型: P\left( X = x_{i},Y = y_{i} \right) = p_{\text{ij}},Z = g\left( X,Y \right) 则:

P(Z = z_{k}) = P\left\{ g\left( X,Y \right) = z_{k} \right\} = \sum_{g\left( x_{i},y_{i} \right) = z_{k}}^{}{P\left( X = x_{i},Y = y_{j} \right)}

连续型: \left( X,Y \right) \sim f\left( x,y \right),Z = g\left( X,Y \right) 则:

F_{z}\left( z \right) = P\left\{ g\left( X,Y \right) \leq z \right\} = \iint_{g(x,y) \leq z}^{}{f(x,y)dxdy}f_{z}(z) = F'_{z}(z)

7.重要公式与结论

(1) 边缘密度公式: f_{X}(x) = \int_{- \infty}^{+ \infty}{f(x,y)dy,} f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x,y)dx}

(2) P\left\{ \left( X,Y \right) \in D \right\} = \iint_{D}^{}{f\left( x,y \right)\text{dxdy}}

(3) 若(X,Y)服从二维正态分布N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},\rho) 则有:

1) X\sim N\left( \mu_{1},\sigma_{1}^{2} \right),Y\sim N(\mu_{2},\sigma_{2}^{2}).

2) XY相互独立\Leftrightarrow \rho = 0,即XY不相关。

3) C_{1}X + C_{2}Y\sim N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} + C_{2}^{2}\sigma_{2}^{2} + 2C_{1}C_{2}\sigma_{1}\sigma_{2}\rho)

4) \text{\ X}关于Y=y的条件分布为: N(\mu_{1} + \rho\frac{\sigma_{1}}{\sigma_{2}}(y - \mu_{2}),\sigma_{1}^{2}(1 - \rho^{2}))

5) Y关于X = x的条件分布为: N(\mu_{2} + \rho\frac{\sigma_{2}}{\sigma_{1}}(x - \mu_{1}),\sigma_{2}^{2}(1 - \rho^{2}))

(4) 若XY独立,且分别服从N(\mu_{1},\sigma_{1}^{2}),N(\mu_{1},\sigma_{2}^{2}), 则:

\left( X,Y \right)\sim N(\mu_{1},\mu_{2},\sigma_{1}^{2},\sigma_{2}^{2},0), C_{1}X + C_{2}Y\widetilde{\ }N(C_{1}\mu_{1} + C_{2}\mu_{2},C_{1}^{2}\sigma_{1}^{2} + C_{2}^{2}\sigma_{2}^{2}).

(5) 若XY相互独立,f\left( x \right)g\left( x \right)为连续函数, 则f\left( X \right)g(Y)也相互独立。

随机变量的数字特征

1.数学期望

离散型:P\left\{ X = x_{i} \right\} = p_{i},E(X) = \sum_{i}^{}{x_{i}p_{i}}

连续型: X\sim f(x),E(X) = \int_{- \infty}^{+ \infty}{xf(x)dx}

性质:

(1) E(C) = C,E\lbrack E(X)\rbrack = E(X)

(2) E(C_{1}X + C_{2}Y) = C_{1}E(X) + C_{2}E(Y)

(3) 若X和Y独立,则E(XY) = E(X)E(Y) (4)\left\lbrack E(XY) \right\rbrack^{2} \leq E(X^{2})E(Y^{2})

2.方差D(X) = E\left\lbrack X - E(X) \right\rbrack^{2} = E(X^{2}) - \left\lbrack E(X) \right\rbrack^{2}

3.标准差\sqrt{D(X)}

4.离散型:D(X) = \sum_{i}^{}{\left\lbrack x_{i} - E(X) \right\rbrack^{2}p_{i}}

5.连续型:D(X) = {\int_{- \infty}^{+ \infty}\left\lbrack x - E(X) \right\rbrack}^{2}f(x)dx

性质:

(1)\ D(C) = 0,D\lbrack E(X)\rbrack = 0,D\lbrack D(X)\rbrack = 0

(2)\ XY相互独立,则D(X \pm Y) = D(X) + D(Y)

(3)\ D\left( C_{1}X + C_{2} \right) = C_{1}^{2}D\left( X \right)

(4) 一般有 D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y) = D(X) + D(Y) \pm 2\rho\sqrt{D(X)}\sqrt{D(Y)}

(5)\ D\left( X \right) < E\left( X - C \right)^{2},C \neq E\left( X \right)

(6)\ D(X) = 0 \Leftrightarrow P\left\{ X = C \right\} = 1

6.随机变量函数的数学期望

(1) 对于函数Y = g(x)

X为离散型:P\{ X = x_{i}\} = p_{i},E(Y) = \sum_{i}^{}{g(x_{i})p_{i}}

X为连续型:X\sim f(x),E(Y) = \int_{- \infty}^{+ \infty}{g(x)f(x)dx}

(2) Z = g(X,Y);\left( X,Y \right)\sim P\{ X = x_{i},Y = y_{j}\} = p_{\text{ij}}; E(Z) = \sum_{i}^{}{\sum_{j}^{}{g(x_{i},y_{j})p_{\text{ij}}}} \left( X,Y \right)\sim f(x,y);E(Z) = \int_{- \infty}^{+ \infty}{\int_{- \infty}^{+ \infty}{g(x,y)f(x,y)dxdy}}

7.协方差 Cov(X,Y) = E\left\lbrack (X - E(X)(Y - E(Y)) \right\rbrack

8.相关系数 \rho_{\text{XY}} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}},k阶原点矩 E(X^{k}); k阶中心矩 E\left\{ {\lbrack X - E(X)\rbrack}^{k} \right\}

性质:

(1)\ Cov(X,Y) = Cov(Y,X)

(2)\ Cov(aX,bY) = abCov(Y,X)

(3)\ Cov(X_{1} + X_{2},Y) = Cov(X_{1},Y) + Cov(X_{2},Y)

(4)\ \left| \rho\left( X,Y \right) \right| \leq 1

(5)\ \rho\left( X,Y \right) = 1 \Leftrightarrow P\left( Y = aX + b \right) = 1 ,其中a > 0

\rho\left( X,Y \right) = - 1 \Leftrightarrow P\left( Y = aX + b \right) = 1 ,其中a < 0

9.重要公式与结论

(1)\ D(X) = E(X^{2}) - E^{2}(X)

(2)\ Cov(X,Y) = E(XY) - E(X)E(Y)

(3) \left| \rho\left( X,Y \right) \right| \leq 1,\rho\left( X,Y \right) = 1 \Leftrightarrow P\left( Y = aX + b \right) = 1,其中a > 0

\rho\left( X,Y \right) = - 1 \Leftrightarrow P\left( Y = aX + b \right) = 1,其中a < 0

(4) 下面5个条件互为充要条件:

\rho(X,Y) = 0 \Leftrightarrow Cov(X,Y) = 0 \Leftrightarrow E(X,Y) = E(X)E(Y) \Leftrightarrow D(X + Y) = D(X) + D(Y) \Leftrightarrow D(X - Y) = D(X) + D(Y)

注:XY独立为上述5个条件中任何一个成立的充分条件,但非必要条件。

数理统计的基本概念

1.基本概念

总体:研究对象的全体,它是一个随机变量,用X表示。

个体:组成总体的每个基本元素。

简单随机样本:来自总体Xn个相互独立且与总体同分布的随机变量X_{1},X_{2}\cdots,X_{n},称为容量为n的简单随机样本,简称样本。

统计量:设X_{1},X_{2}\cdots,X_{n},是来自总体X的一个样本,g(X_{1},X_{2}\cdots,X_{n}))是样本的连续函数,且g(\centerdot)中不含任何未知参数,则称g(X_{1},X_{2}\cdots,X_{n})为统计量

样本均值:\overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}

样本方差:S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{2}

样本矩:样本k阶原点矩:A_{k} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}^{k},k = 1,2,\cdots

样本k阶中心矩:B_{k} = \frac{1}{n}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{k},k = 1,2,\cdots

2.分布

\chi^{2}分布:\chi^{2} = X_{1}^{2} + X_{2}^{2} + \cdots + X_{n}^{2}\sim\chi^{2}(n),其中X_{1},X_{2}\cdots,X_{n},相互独立,且同服从N(0,1)

t分布:T = \frac{X}{\sqrt{Y/n}}\sim t(n) ,其中X\sim N\left( 0,1 \right),Y\sim\chi^{2}(n),XY 相互独立。

F分布:F = \frac{X/n_{1}}{Y/n_{2}}\sim F(n_{1},n_{2}),其中X\sim\chi^{2}\left( n_{1} \right),Y\sim\chi^{2}(n_{2}),XY相互独立。

分位数:若P(X \leq x_{\alpha}) = \alpha,则称x_{\alpha}X\alpha分位数

3.正态总体的常用样本分布

(1) 设X_{1},X_{2}\cdots,X_{n}为来自正态总体N(\mu,\sigma^{2})的样本,

{% raw %}\overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i},S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2},}{% endraw %}则:

1) \overline{X}\sim N\left( \mu,\frac{\sigma^{2}}{n} \right)\text{\ \ }或者\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1)

2) {% raw %}\frac{(n - 1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2}\sim\chi^{2}(n - 1)}{% endraw %}

3) {% raw %}\frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \mu)}^{2}\sim\chi^{2}(n)}{% endraw %}

4)\text{\ \ }\frac{\overline{X} - \mu}{S/\sqrt{n}}\sim t(n - 1)

4.重要公式与结论

(1) 对于\chi^{2}\sim\chi^{2}(n),有E(\chi^{2}(n)) = n,D(\chi^{2}(n)) = 2n;

(2) 对于T\sim t(n),有E(T) = 0,D(T) = \frac{n}{n - 2}(n > 2)

(3) 对于F\widetilde{\ }F(m,n),有 \frac{1}{F}\sim F(n,m),F_{a/2}(m,n) = \frac{1}{F_{1 - a/2}(n,m)};

(4) 对于任意总体X,有 E(\overline{X}) = E(X),E(S^{2}) = D(X),D(\overline{X}) = \frac{D(X)}{n}


标题: 数学公式--修正版(mathjax显示语法错误)
文章作者: lonuslan
文章链接: https://louislan.com/articles/2020/03/02/1583151105041.html
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 Hi I'm LouisLan
    评论
    0 评论
avatar

取消