daily leetcode - subsets-ii - !
题目地址
https://leetcode.com/problems/subsets-ii/
题目描述
Given a collection of integers that might contain duplicates, nums, return all possible subsets (the power set).
Note: The solution set must not contain duplicate subsets.
Example:
Input: [1,2,2]
Output:
[
[2],
[1],
[1,2,2],
[2,2],
[1,2],
[]
]
思路
这道子集合之二是之前那道 Subsets 的延伸,这次输入数组允许有重复项,其他条件都不变,只需要在之前那道题解法的基础上稍加改动便可以做出来,我们先来看非递归解法,拿题目中的例子 [1 2 2] 来分析,根据之前 Subsets 里的分析可知,当处理到第一个 2 时,此时的子集合为 [], [1], [2], [1, 2],而这时再处理第二个 2 时,如果在 [] 和 [1] 后直接加 2 会产生重复,所以只能在上一个循环生成的后两个子集合后面加 2,发现了这一点,题目就可以做了,我们用 last 来记录上一个处理的数字,然后判定当前的数字和上面的是否相同,若不同,则循环还是从 0 到当前子集的个数,若相同,则新子集个数减去之前循环时子集的个数当做起点来循环,这样就不会产生重复了,代码如下:
解法一:
class Solution {
public:
vector<vector<int>> subsetsWithDup(vector<int> &S) {
if (S.empty()) return {};
vector<vector<int>> res(1);
sort(S.begin(), S.end());
int size = 1, last = S[0];
for (int i = 0; i < S.size(); ++i) {
if (last != S[i]) {
last = S[i];
size = res.size();
}
int newSize = res.size();
for (int j = newSize - size; j < newSize; ++j) {
res.push_back(res[j]);
res.back().push_back(S[i]);
}
}
return res;
}
};
整个添加的顺序为:
[]
[1]
[2]
[1 2]
[2 2]
[1 2 2]
对于递归的解法,根据之前 Subsets 里的构建树的方法,在处理到第二个 2 时,由于前面已经处理了一次 2,这次我们只在添加过 2 的 [2] 和 [1 2] 后面添加 2,其他的都不添加,那么这样构成的二叉树如下图所示:
[]
/ \
/ \
/ \
[1] []
/ \ / \
/ \ / \
[1 2] [1] [2] []
/ \ / \ / \ / \
[1 2 2] [1 2] X [1] [2 2] [2] X []
代码只需在原有的基础上增加一句话,while (S[i] == S[i + 1]) ++i; 这句话的作用是跳过树中为 X 的叶节点,因为它们是重复的子集,应被抛弃。代码如下:
解法二:
class Solution {
public:
vector<vector<int>> subsetsWithDup(vector<int> &S) {
if (S.empty()) return {};
vector<vector<int>> res;
vector<int> out;
sort(S.begin(), S.end());
getSubsets(S, 0, out, res);
return res;
}
void getSubsets(vector<int> &S, int pos, vector<int> &out, vector<vector<int>> &res) {
res.push_back(out);
for (int i = pos; i < S.size(); ++i) {
out.push_back(S[i]);
getSubsets(S, i + 1, out, res);
out.pop_back();
while (i + 1 < S.size() && S[i] == S[i + 1]) ++i;
}
}
};
整个添加的顺序为:
[]
[1]
[1 2]
[1 2 2]
[2]
[2 2]
思路2
这道题目是求集合,并不是求极值
,因此动态规划不是特别切合,因此我们需要考虑别的方法。
这种题目其实有一个通用的解法,就是回溯法。
网上也有大神给出了这种回溯法解题的
通用写法,这里的所有的解法使用通用方法解答。
除了这道题目还有很多其他题目可以用这种通用解法,具体的题目见后方相关题目部分。
我们先来看下通用解法的解题思路,我画了一张图:
通用写法的具体代码见下方代码区。
关键点解析
- 回溯法
- backtrack 解题公式
代码
- 语言支持:JS,C++,Python3
JavaScript Code:
/*
* @lc app=leetcode id=90 lang=javascript
*
* [90] Subsets II
*
* https://leetcode.com/problems/subsets-ii/description/
*
* algorithms
* Medium (41.53%)
* Total Accepted: 197.1K
* Total Submissions: 469.1K
* Testcase Example: '[1,2,2]'
*
* Given a collection of integers that might contain duplicates, nums, return
* all possible subsets (the power set).
*
* Note: The solution set must not contain duplicate subsets.
*
* Example:
*
*
* Input: [1,2,2]
* Output:
* [
* [2],
* [1],
* [1,2,2],
* [2,2],
* [1,2],
* []
* ]
*
*
*/
function backtrack(list, tempList, nums, start) {
list.push([...tempList]);
for(let i = start; i < nums.length; i++) {
// 和78.subsets的区别在于这道题nums可以有重复
// 因此需要过滤这种情况
if (i > start && nums[i] === nums[i - 1]) continue;
tempList.push(nums[i]);
backtrack(list, tempList, nums, i + 1)
tempList.pop();
}
}
/**
* @param {number[]} nums
* @return {number[][]}
*/
var subsetsWithDup = function(nums) {
const list = [];
backtrack(list, [], nums.sort((a, b) => a - b), 0, [])
return list;
};
C++ Code:
class Solution {
private:
void subsetsWithDup(vector<int>& nums, size_t start, vector<int>& tmp, vector<vector<int>>& res) {
res.push_back(tmp);
for (auto i = start; i < nums.size(); ++i) {
if (i > start && nums[i] == nums[i - 1]) continue;
tmp.push_back(nums[i]);
subsetsWithDup(nums, i + 1, tmp, res);
tmp.pop_back();
}
}
public:
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
auto tmp = vector<int>();
auto res = vector<vector<int>>();
sort(nums.begin(), nums.end());
subsetsWithDup(nums, 0, tmp, res);
return res;
}
};
Python Code:
class Solution:
def subsetsWithDup(self, nums: List[int], sorted: bool=False) -> List[List[int]]:
"""回溯法,通过排序参数避免重复排序"""
if not nums:
return [[]]
elif len(nums) == 1:
return [[], nums]
else:
# 先排序,以便去重
# 注意,这道题排序花的时间比较多
# 因此,增加一个参数,使后续过程不用重复排序,可以大幅提高时间效率
if not sorted:
nums.sort()
# 回溯法
pre_lists = self.subsetsWithDup(nums[:-1], sorted=True)
all_lists = [i+[nums[-1]] for i in pre_lists] + pre_lists
# 去重
result = []
for i in all_lists:
if i not in result:
result.append(i)
return result
本文参考自:
https://github.com/grandyang/leetcode/ &
https://github.com/azl397985856/leetcode